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Abstract

Introduction: malaria remains a significant public
health burden in sub-Saharan Africa, with Kano
State reporting over 6 million cases in 2022.
Despite  ongoing  control efforts, malaria
transmission persists due to climatic factors,
inadequate healthcare infrastructure, and gaps in
treatment access. Artemisinin-based combination
therapy (ACT) is a widely recommended treatment.
This study analyzed malaria transmission dynamics
in Kano using a mathematical model to evaluate
the impact of ACT coverage on disease control.
Methods: this study utilized secondary data from
the District Health Information System 2 (DHIS2)
for the period 2018-2022 to estimate state
variables and analyze trends, while key parameters
were sourced from published research. A
compartmental SITR-SI model was employed, with
numerical simulations and sensitivity analyses
conducted to assess the effects of varying ACT
coverage levels. Results: the effective reproduction
number (Re) for Kano State was estimated at 3.01,
indicating high transmission potential. Model
simulations revealed that increasing ACT coverage
to 80% reduced the rate of resistance below 1,
demonstrating the potential for disease control.
Seasonal peaks in malaria incidence were observed
during the rainy season. Sensitivity analyses
confirmed that treatment coverage had the most
significant influence on reducing transmission and
infection duration. Conclusion: malaria control in
Kano State requires scaling up ACT treatment
coverage to at least 80% to effectively reduce
transmission.  Targeted interventions during
seasonal peaks are essential for minimizing the
disease burden and improving health outcomes.

Introduction

Malaria is a life-threatening disease caused by
Plasmodium parasites, which are transmitted to
humans through the bites of infected female
Anopheles mosquitoes [1]. It remains one of the
most significant public health challenges globally,
particularly in sub-Saharan Africa, where it is a
leading cause of morbidity and mortality [1].
According to the World Health Organization
(WHO), there were approximately 249 million
malaria cases worldwide in 2022, resulting in an
estimated 608,000 deaths, predominantly
affecting young children and pregnant women in
endemic regions [2]. Sub-Saharan Africa
accounted for about 94% of these cases
and deaths, underscoring the region’s
disproportionate burden [3]. Nigeria alone
contributes 27% of global malaria cases and 31%
of deaths, making it the country with the highest
malaria burden worldwide [4]. Nigeria represents
a significant proportion of the global health
malaria crisis, comprising 27% of worldwide cases
and 31% of deaths in 2022 [5]. An estimated
6,088,000 malaria cases out of a population of
approximately 15,300,000, equating to 40% of the
total population, were reported in Kano State in
2022 [3]. This figure reflects a significant burden,
as the state has been identified as having a high
incidence of malaria cases [6]. Reports indicate
that over 50% of outpatient visits in Kano State are
due to malaria-related illnesses [7,8]. The burden
of malaria is exacerbated by socio-economic
factors, inadequate healthcare infrastructure, and
climate variability, which collectively hinder
effective control measures [9].

As of 2014, Africa contributed to global deaths by
about 91%, underscoring the continent's
vulnerability to this disease [2]. The interplay
between environmental conditions and human
factors has led to complex transmission dynamics.
For instance, variations in temperature and rainfall
significantly influence mosquito breeding patterns
and the lifecycle of the Plasmodium parasite [10].
While treatment interventions, such as

Zainab Bello Dambazau et al. PAMJ-OH - 18(11). 21 Oct 2025. - Page numbers not for citation purposes. 2



Article g

A PAMJ

" One Health

artemisinin-based combination therapies (ACTs),
remain the cornerstone of malaria control,
insecticide resistance among mosquito
populations and gaps in healthcare access and
treatment adherence limit their effectiveness [11].
Recent studies highlighted that while progress has
been made in reducing malaria incidence through
various interventions, the emergence of drug-
resistant strains and climatic changes pose new
challenges for malaria control strategies across the
continent [12].

Numerous studies highlighted the importance of
achieving high treatment coverage for malaria
management. Research indicates that increasing
the use of artemisinin-based combination
therapies (ACTs) to 80% can significantly
reduce malaria transmission and outbreak
duration [13,14]. In countries like Kenya and
Zambia, widespread availability of malaria drugs
has decreased malaria's impact by over 50%,
particularly when combined with interventions
such as insecticide-treated nets (ITNs) and indoor
residual spraying [15]. Areas with treatment
coverage above 70% have noted declines in
malaria cases, as supported by findings from
Tanzania  and Uganda [16,17]. Malaria
transmission is significantly influenced by climate
and environmental factors, particularly in tropical
regions. In Kano State, seasonal rainfall patterns
create ideal breeding conditions for Anopheles
mosquitoes [2].

Several mathematical models have proven useful
for predicting malaria transmission dynamics and
offering superior insights into the effectiveness of
integrated strategies by simulating various
scenarios [18,19]. These models can be formulated
using biological data and experimental data
to simulate the outcomes under different
scenarios [4,20]. These include statistical
regression models, which are useful for identifying
risk factors and associations, and agent-based
models, which simulate individual-level
interactions to capture complex behavior and
variability in malaria spread. However, these
approaches often require large volumes of

detailed input data and significant computational
power, making them less feasible in low-resource
settings [2]. In contrast, compartmental models
such as SIR, SEIR, and SITR are widely used in
malaria research because they offer a balance
between biological realism and analytical
simplicity [3].

In this study, the SITR-SI model was selected
because it introduces a “treated” compartment,
which enables the simulation of treatment effects,
specifically the impact of artemisinin-based
combination therapies (ACTs) on disease
transmission. This structure has been effectively
used in prior research to assess control strategies
under various treatment coverage scenarios in
high-burden settings [4]. Despite these existing
modeling approaches, a clear gap remains
in studies that incorporate ACT and other
treatment interventions within a deterministic
compartmental framework across all susceptible
populations in high-burden settings like Kano
State [2,4].

This study aimed to fill that gap by simulating the
potential impact of these treatments in the
context of Kano State. Understanding the interplay
between population and treatment interventions
is essential for addressing malaria transmission,
where these variables create complex dynamics
that influence the effectiveness of public health
strategies. This study will provide targeted insights
that can enhance malaria control strategies in
Kano State, offering a valuable tool for
policymakers and healthcare professionals aiming
to mitigate this persistent public health threat.

Methods

Study area: this study focused on Kano State due
to its exceptionally high malaria burden and its
strategic relevance for malaria control in Nigeria.
As Nigeria’'s most populous state, Kano's
epidemiological profile provides a robust basis for
modeling interventions, with wide variation in
malaria transmission across its 44 LGAs. The
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availability of high-resolution, five-year data from
DHIS2 further supports its suitability for detailed
mathematical modeling. Importantly, while this
study is Kano-specific, its findings can apply to
other high-transmission, resource-constrained
settings with similar environmental and health
system characteristics. Kano State, situated in
northern Nigeria, holds the distinction of being the
most populous state in Nigeria and comprises 44
Local Government Areas (LGAs) [21]. The
healthcare landscape in Kano State closely mirrors
that of the entire nation, with infectious and
parasitic diseases prevailing and accounting for
most of both illness and death within the
state [5,22]. There are a total of 1183 healthcare
facilities spread across the 44 LGAs. Of the total
health facilities, 97% (1142) constitute Primary
Health Care (PHC) facilities while 3.3% and 0.2%
fall under the Secondary Health Care (SHC) and
Tertiary Health Care facilities, respectively [6,23].
Most of the healthcare facilities are publicly
owned (91% primary, 85% secondary, 100%
tertiary) [23].

Kano State, situated in northern Nigeria, holds the
distinction of being the most populous state in
Nigeria and comprises 44 Local Government Areas
(LGAs) [21]. The healthcare landscape in Kano
State closely mirrors that of the entire nation, with
infectious and parasitic diseases prevailing and
accounting for most of both illness and death
within the state [5,22]. There are a total of 1183
healthcare facilities spread across the 44 LGAs. Of
the total health facilities, 97% (1142) constitute
Primary Health Care (PHC) facilities, while 3.3%
and 0.2% fall under the Secondary Health Care
(SHC) and Tertiary Health Care (facilities,
respectively [6]. Most of the healthcare facilities
are publicly owned (91% primary, 85% secondary,
100% tertiary) [23].

Data collection: secondary data on monthly
malaria incidence in Kano for the period of January
2018 to December 2022 were collected from the
District Health Information System 2 (DHIS2)
system. The sample for this study consisted of
monthly malaria case records obtained from the

DHIS2 platform for all 44 Local Government Areas
(LGAs) in Kano State. Inclusion criteria were all
available records of reported malaria cases,
treatments administered (ACT and other
antimalarials), and disaggregated data by LGA and
month. Records with missing or incomplete
treatment variables were excluded during data
cleaning. This approach ensured comprehensive
spatial and temporal coverage of malaria
incidence and treatment patterns in the state. The
data obtained from DHIS2 consists mainly of the
incidence of monthly cases of malaria and treated
patients. The data was cleaned and analyzed using
Excel, Python, Google Colab, and R statistical
software to identify the monthly trends, incidence
by LGA, simulations, and scenario analysis of
malaria cases over the study period. The data set
had the following variables: Local Government
Area (LGA), Persons with confirmed
uncomplicated Malaria, Severe Malaria cases seen,
Persons Clinically diagnosed with Malaria treated
with ACT, Persons with Confirmed Uncomplicated
Malaria treated with ACT, Persons with Confirmed
Uncomplicated Malaria treated with other
antimalarials, all disaggregated by the month and
year.

Mathematical model

Model description: the model consists of two
main components: the human population (SITR)
and the mosquito population (SI). In the human
population, susceptible individuals (S) can become
infected (I) through contact with infected
mosquitoes, move to the treated (T) compartment
upon receiving treatment, or recover (R) naturally
or through treatment. In the mosquito population,
susceptible mosquitoes (S) become infected ()
after biting infected humans, with both
compartments experiencing a natural death rate.
Arrows in the schematic diagram indicate the flow
between these compartments, along with the
natural death rates affecting each group, and
disease-induced death in the infectious human
population.
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Model assumptions: the model was developed
based on the following assumptions: i) the total
human and vector population is not constant, ii)
development of malaria begins after a bite by a
female Anopheles mosquito, iii) treatment with
anti-malaria drugs is continuously given to
infected humans, iv) after recovery, there is
temporary immunity, v) control measures are
continuously implemented, vi) Insecticide-treated
Nets (ITNs) are continuously available/accessible,
vii) indoor residual spray intervention works and
leads to mosquito deaths, viii) the populations
(human and vector) are non-negative, ix) malaria
has an all-year-round transmission. Individuals
from the human population move from one class
to another as their disease status changes and as
the disease evolves. Individuals enter the
susceptible class through immigration or birth and
leave through natural death or infection.

Model formulation: this study models malaria
transmission dynamics using the SITR and SI
models for humans, categorizing mosquitoes
respectively. The model tracks population sizes
over time (Nh) for humans and Nv for mosquitoes
using ordinary differential equations (ODEs) with
initial conditions. Figure 1 presents the schematic
illustration of the model, with the arrows
indicating the migration of the population
dynamics  considering  treatment as an
intervention. The malaria incidence was calculated
from reported cases and treatment rates from
data on patients treated with ACTs for
uncomplicated and severe malaria. The values of
the parameters for the model were obtained from
existing literature, as shown in Annex 1 and
Annex 2, except for the mosquito death rate,
which we calculated based on the 42-day lifespan
of female Anopheles mosquitoes using simple
division [21,22].

ds BrSnl
d—: = xpn + OR, — 22 Shith
% __ BnSaly .

aTp _
—r = Onln — (un + ap )Ty

dR;

dtl = apTp — (up + O)Ry
ﬂ _ . BnSvin .

dr Xv N Sy ly

dly — BvSvln _ I
dt Np vev

The state variables in Annex 1 were derived from
the original dataset and the National Population
Commission. The variables are Persons with
confirmed uncomplicated Malaria, severe Malaria
cases seen, persons clinically diagnosed with
malaria treated with ACT, and persons with
confirmed uncomplicated malaria treated with
ACT. Annex 2 was created based on
epidemiological studies and enhanced through
Monte Carlo estimation, a technique proven in
infectious disease modeling by integrating
stochastic uncertainty into likelihood-based
analysis. All malaria cases were categorized as
infectious, and all treated cases were categorized
as treated. The initial susceptible population is the
total population in the first year of the study
minus the initial infected individuals, and the
vector population was calculated as three times
the total population [24].

Equations for the SITR-SI model: based on the
stated assumptions, the system of Ordinary
Differential Equation (ODE) was adopted to
develop simple SITR-SI model equations, which
allow for to simulation of the spread of malaria
and the impact of treatment. The equations
formulated are:
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Parametric values were all collected from
literature, as represented in Annex 1 and Annex 2,
excluding the death rate of mosquitoes, which was
calculated from the Anopheles female mosquito
life span of 42 days [25,26]. The state variables
were calculated from the original data set and the
National Population Commission document [26].
The incidence rate was calculated using the
formula [25]:

Model analysis

Equilibrium states of the model: a disease system
has two possible equilibria, a situation where both
human and mosquito populations are free from
infection, where:

Number of new infected cases

x 1000

Number of susceptible individulas

This indicates the point at which there is no
malaria infection. Where |h = 0 and Iv = 0 [9].
Represented as:

dSp_  IhSvpp
dt Ih+Rh+5h

At rate of transfer:

dsy
“v —
dt

And secondly, the endemic equilibrium P* = (x*,
v*). Where [26]:

* — IhSvpy * — IvShfy
ITh+Rh+5h ' Th+Rh+Sh

Determination of the effective reproduction
number: second generation matrix using the
Jacobian method was used to calculate the
effective reproduction number. The effective
reproduction number, represented by Re, is the
number of secondary infections caused by an
infected individual throughout the course of a

disease when everyone in the population is
susceptible, with interventions in place [27].

In the six states variables, only |h and Iv are the
disease states variables. The disease and transfer
states are given by F and V, respectively.

[0 ) orave[3 )

The next generation matrix (G) was calculated
using the matrix FV-1 [Ref], which is given by:

’j—“ 0
G=|"" p
o P»

Hy

While the effective reproduction number was
estimated from the largest eigenvalue of G given
by Li MY [26]:

RO = £»
Hy

Existence of disease-free equilibrium solutions:
the effective reproduction number is a parameter
that measures the existence and stability of a
disease in a population. Where R;is < 0, then the
system has a disease-free equilibrium, but if R,is >
1, there is a unique endemic equilibrium [27].

-[5

Sensitivity and scenario analysis: sensitivity
analysis was also done using Colab to determine
the infectivity of the effective reproduction
number using different parameters. This helps to
determine how changes in this recruitment rate
impact Re. Also, scenario analysis was performed
using the ODE solver in R, to check for the
different effects of treatment on the population,
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by adjusting the value to different numbers from
the initial 0.5% to 0.9%.

Results

Figure 2 shows a clear seasonal pattern in malaria
cases in Kano State from January 2018 to
December 2022. There are noticeable peaks every
12 months, starting from June, indicating higher
transmission rates. The cases continue to peak
around August to September, which coincides with
the height of the rainy season, when malaria
transmission is at its highest due to increased
breeding of mosquitoes [10]. The data suggest
that  targeted interventions  should be
implemented starting in June to mitigate the rise
in cases. This was the rationale for developing a
compartmental model to check the effect of
treatment on the infected population.
Figure 3 shows the geospatial analysis of malaria
incidence in Kano State for 2023 identifies three
high-burden Local Government Areas (LGAs): Kano
Municipal, Shanono, and Madobi, with prevalence
ranging between 26 to 32%. These LGAs exhibit
the highest malaria burden, highlighting significant
spatial clustering of malaria incidence within the
state

Numerical simulations: in this section, numerical
simulations are considered to explore transmission
dynamics. Figure 4 illustrates how the number of
susceptible humans changes over time. I-Human
starts with a higher number of susceptible
individuals and declines slowly, indicating a
gradual reduction in susceptibility. The T-human
population begins at a lower point and drops
quickly to almost zero, suggesting that this group
experiences a faster decrease in susceptibility due
to more effective treatment. This trend suggests
the effectiveness of treatment and control
measures. It also raises concerns about potential
challenges, such as drug resistance or barriers to
healthcare access and seeking medical assistance
in the long run. Furthermore, the sudden rise in
the number of people treated and their potential
return to the susceptible population could lead to

future outbreaks, underscoring the importance of
continuous efforts in intervention and prevention
measures [28].

Figure 5 illustrates the dynamics of the susceptible
vector population (S-vector) and the infected
vector population (l-vector) over 60 months.
Initially, the S-vector population starts at
approximately 200 per 1000, rapidly declines
within the first 10 months, and then decreases
gradually. Conversely, the I-vector, starting at
around 50 per 1000, peaks at 10 months and
subsequently declines steadily. This pattern
suggests a high initial number of susceptible
vectors, which quickly decrease due to infection or
other factors. Over time, both populations decline,
indicating potential control or recovery of the
vector population, consistent with a disease
transmission model suggesting effective vector
management. There could be the reasons why the
number of vectors has decreased, for instance
improved efforts in controlling them with methods
like using bed nets treated with insecticides and
indoor spraying which target both susceptible and
infected vector groups [29], changes in the
environment like reduced rainfall or improved
drainage that can decrease breeding grounds for
vectors and hence lower their numbers; also
factors in nature such as more predators
could lead to a decline in vector populations over
time [30].

Interpretation: the graphs likely model the
interaction between humans and vectors, such as
mosquitoes, in a disease transmission scenario.
The rapid decline in susceptible vectors suggests
they play a significant role in reducing the risk to
humans.

Effective reproduction number: by applying
equation 12 and using the values for u, and 6,
obtained from literature Annex 1, a Re value of
3.01 was obtained. This suggests that, on average,
each individual infected with malaria in Kano state
is expected to infect approximately 3.01 other
people, assuming no permanent immunity and
available interventions. This indicates a
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high potential for malaria transmission in the
region [31]. This aligns with what might be
expected in a highly endemic region with
favorable conditions for mosquito breeding and
transmission.

Sensitivity analysis - mosquito recruitment rate:
to effectively lessen the effects of malaria in
Nigeria, it's crucial to understand the factors that
affect malaria transmission and occurrence.
Studies have shown that the initial spread of the
disease is connected to Re while the prevalence of
the disease is influenced by the equilibrium point,
specifically by the levels of infection [11]. The
study had a negative value of -0.489 for the
treatment rate when the sensitivity analysis test
was calculated with respect to the treatment
intervention. This analysis helps understand the
influence of parameter values on the spread of
diseases and helps identify if the intervention has
an impact on Re [32].

Scenario analysis based on treatment
intervention: scenario analysis shows that
increasing the treatment rate from 50% to 70%
and 80% reduces the effective reproduction
number (Re) from 1.23 to 1.04 and 0.97,
respectively.

Discussion

In this study, we evaluated the dynamics of the
SITR-SI model and applied malaria transmission
between humans and mosquitoes. The model
incorporated demographic factors such as births
and migration, which allowed infected individuals
to re-enter the susceptible compartment, as well
as the impact of treatment on the infected
population. We derived the basic reproduction
number and discussed the existence of stability of
DFE and EE of the model (1,2,3,4,5,6) between
susceptible humans and mosquitoes (10). The
analysis showed that if Re is less than one, the
disease-free  equilibrium  (DFE) is locally
asymptotically stable. This implied that only the
susceptible population remained, while the

infected populations approached zero, leading to
disease eradication. Conversely, if Re is greater
than one, the DFE becomes unstable, indicating
that humans and mosquitoes will get infected, as
represented in equations (1)-(4) and (5)-(6),
respectively. This has been verified numerically,
with simulations presented in equations (8) and
(10), and the results are illustrated in Figure 5.

The sensitivity analysis showed that the most
effective parameter is p, for the human
compartment. The simulation showed that both
humans and mosquitoes will exist and get
infected. These results helped predict transmission
and how preventive and control measures
impacted the occurrence of malaria. Clearly, in the
simulations, it was noticed that to reduce the Re,
there was a need to focus on improved treatment
in the infected population by increasing the
coverage to higher levels, to reduce the rate of
infection, represented shown graphically in
Figure 4, Figure 5. From the simulations, it is
evident that to reduce Re, we need to focus on
improving treatment in the infected population by
increasing coverage to higher levels, thereby
reducing the rate of infection. This study presents
a novel application of a SITR-SI compartmental
model specifically designed to evaluate the impact
of ACT treatment coverage on malaria
transmission in Kano State, Nigeria, a high-burden
and underrepresented region in malaria modeling
literature.

Limitations: one limitation of this study was the
reliance on secondary data, which could introduce
inaccuracies in parameter estimates. Data cleaning
and pre-processing were applied to minimize
errors. Future research should focus on collecting
primary data to validate model assumptions and
improve accuracy.

Recommendations: i) increase ACT coverage to at
least 80% to significantly reduce malaria
transmission, ii) target high-burden LGAs like
Fagge, Dala, and Gwale with intensified
interventions, iii) deploy rapid diagnostic tests
widely to promote early detection and treatment,
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iv) use seasonal climate data to anticipate
outbreaks and allocate resources proactively, vi)
digitize health facility reporting to improve data
accuracy and timeliness, v) establish a modeling
unit within the Ministry of Health to guide malaria
control strategies, vii) launch culturally tailored
campaigns to improve net usage and prompt
treatment-seeking behavior.

Conclusion

The model showed that malaria can be controlled
effectively among infected populations by
increasing the rate of coverage using treatment
with ACT, which keeps the human population
stable.

What is known about this topic

e Malaria continues to be a significant
health challenge in sub-Saharan Africa,
particularly in Nigeria. In 2022, Kano State
alone reported over 6 million cases,
highlighting the difficulties posed by
inadequate infrastructure, socioeconomic
issues, and climate factors;

e Ensuring high coverage of ACT (artemisinin-
based combination therapy) is essential for
controlling malaria. Previous studies have
demonstrated that achieving coverage
levels above 70-80% significantly reduces
both transmission and the duration of
infection;

e Mathematical modeling is an established
approach for simulating the dynamics of
malaria transmission and has been
employed to evaluate the effectiveness of
interventions such as ACT, ITNs, and indoor

spraying.

What this study adds

e This study presents the first detailed
compartmental SITR-SI model specifically
applied to malaria in Kano State,
addressing a gap in region-specific
modeling by incorporating treatment
interventions such as ACT;

e The study identifies a high effective
reproduction number (Re = 3.01) for Kano
and shows that increasing ACT treatment
coverage to 80% can reduce Re below 1,
indicating the potential for malaria
elimination;

e The analysis identifies seasonal and spatial
trends in malaria cases, highlighting
transmission peaks during the rainy season
and pinpointing high-prevalence LGAs such
as Kano Municipal, Shanono, and Madobi,
thereby aiding in the targeting of
interventions.
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