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Abstract 

Introduction: malaria remains a significant public 
health burden in sub-Saharan Africa, with Kano 
State reporting over 6 million cases in 2022. 
Despite ongoing control efforts, malaria 
transmission persists due to climatic factors, 
inadequate healthcare infrastructure, and gaps in 
treatment access. Artemisinin-based combination 
therapy (ACT) is a widely recommended treatment. 
This study analyzed malaria transmission dynamics 
in Kano using a mathematical model to evaluate 
the impact of ACT coverage on disease control. 
Methods: this study utilized secondary data from 
the District Health Information System 2 (DHIS2) 
for the period 2018–2022 to estimate state 
variables and analyze trends, while key parameters 
were sourced from published research. A 
compartmental SITR-SI model was employed, with 
numerical simulations and sensitivity analyses 
conducted to assess the effects of varying ACT 
coverage levels. Results: the effective reproduction 
number (Re) for Kano State was estimated at 3.01, 
indicating high transmission potential. Model 
simulations revealed that increasing ACT coverage 
to 80% reduced the rate of resistance below 1, 
demonstrating the potential for disease control. 
Seasonal peaks in malaria incidence were observed 
during the rainy season. Sensitivity analyses 
confirmed that treatment coverage had the most 
significant influence on reducing transmission and 
infection duration. Conclusion: malaria control in 
Kano State requires scaling up ACT treatment 
coverage to at least 80% to effectively reduce 
transmission. Targeted interventions during 
seasonal peaks are essential for minimizing the 
disease burden and improving health outcomes. 

Introduction     

Malaria is a life-threatening disease caused by 
Plasmodium parasites, which are transmitted to 
humans through the bites of infected female 
Anopheles mosquitoes [1]. It remains one of the 
most significant public health challenges globally, 
particularly in sub-Saharan Africa, where it is a 
leading cause of morbidity and mortality [1]. 
According to the World Health Organization 
(WHO), there were approximately 249 million 
malaria cases worldwide in 2022, resulting in an 
estimated 608,000 deaths, predominantly 
affecting young children and pregnant women in 
endemic regions [2]. Sub-Saharan Africa 
accounted for about 94% of these cases  
and deaths, underscoring the region´s 
disproportionate burden [3]. Nigeria alone 
contributes 27% of global malaria cases and 31% 
of deaths, making it the country with the highest 
malaria burden worldwide [4]. Nigeria represents 
a significant proportion of the global health 
malaria crisis, comprising 27% of worldwide cases 
and 31% of deaths in 2022 [5]. An estimated 
6,088,000 malaria cases out of a population of 
approximately 15,300,000, equating to 40% of the 
total population, were reported in Kano State in 
2022 [3]. This figure reflects a significant burden, 
as the state has been identified as having a high 
incidence of malaria cases [6]. Reports indicate 
that over 50% of outpatient visits in Kano State are 
due to malaria-related illnesses [7,8]. The burden 
of malaria is exacerbated by socio-economic 
factors, inadequate healthcare infrastructure, and 
climate variability, which collectively hinder 
effective control measures [9]. 

As of 2014, Africa contributed to global deaths by 
about 91%, underscoring the continent's 
vulnerability to this disease [2]. The interplay 
between environmental conditions and human 
factors has led to complex transmission dynamics. 
For instance, variations in temperature and rainfall 
significantly influence mosquito breeding patterns 
and the lifecycle of the Plasmodium parasite [10]. 
While treatment interventions, such as 



Article  
 

 

Zainab Bello Dambazau et al. PAMJ-OH - 18(11). 21 Oct 2025.  -  Page numbers not for citation purposes. 3 

artemisinin-based combination therapies (ACTs), 
remain the cornerstone of malaria control, 
insecticide resistance among mosquito 
populations and gaps in healthcare access and 
treatment adherence limit their effectiveness [11]. 
Recent studies highlighted that while progress has 
been made in reducing malaria incidence through 
various interventions, the emergence of drug-
resistant strains and climatic changes pose new 
challenges for malaria control strategies across the 
continent [12]. 

Numerous studies highlighted the importance of 
achieving high treatment coverage for malaria 
management. Research indicates that increasing 
the use of artemisinin-based combination 
therapies (ACTs) to 80% can significantly  
reduce malaria transmission and outbreak 
duration [13,14]. In countries like Kenya and 
Zambia, widespread availability of malaria drugs 
has decreased malaria's impact by over 50%, 
particularly when combined with interventions 
such as insecticide-treated nets (ITNs) and indoor 
residual spraying [15]. Areas with treatment 
coverage above 70% have noted declines in 
malaria cases, as supported by findings from 
Tanzania and Uganda [16,17]. Malaria 
transmission is significantly influenced by climate 
and environmental factors, particularly in tropical 
regions. In Kano State, seasonal rainfall patterns 
create ideal breeding conditions for Anopheles 
mosquitoes [2]. 

Several mathematical models have proven useful 
for predicting malaria transmission dynamics and 
offering superior insights into the effectiveness of 
integrated strategies by simulating various 
scenarios [18,19]. These models can be formulated 
using biological data and experimental data  
to simulate the outcomes under different 
scenarios [4,20]. These include statistical 
regression models, which are useful for identifying 
risk factors and associations, and agent-based 
models, which simulate individual-level 
interactions to capture complex behavior and 
variability in malaria spread. However, these 
approaches often require large volumes of 

detailed input data and significant computational 
power, making them less feasible in low-resource 
settings [2]. In contrast, compartmental models 
such as SIR, SEIR, and SITR are widely used in 
malaria research because they offer a balance 
between biological realism and analytical 
simplicity [3]. 

In this study, the SITR-SI model was selected 
because it introduces a “treated” compartment, 
which enables the simulation of treatment effects, 
specifically the impact of artemisinin-based 
combination therapies (ACTs) on disease 
transmission. This structure has been effectively 
used in prior research to assess control strategies 
under various treatment coverage scenarios in 
high-burden settings [4]. Despite these existing 
modeling approaches, a clear gap remains  
in studies that incorporate ACT and other 
treatment interventions within a deterministic 
compartmental framework across all susceptible 
populations in high-burden settings like Kano  
State [2,4]. 

This study aimed to fill that gap by simulating the 
potential impact of these treatments in the 
context of Kano State. Understanding the interplay 
between population and treatment interventions 
is essential for addressing malaria transmission, 
where these variables create complex dynamics 
that influence the effectiveness of public health 
strategies. This study will provide targeted insights 
that can enhance malaria control strategies in 
Kano State, offering a valuable tool for 
policymakers and healthcare professionals aiming 
to mitigate this persistent public health threat. 

Methods     

Study area: this study focused on Kano State due 
to its exceptionally high malaria burden and its 
strategic relevance for malaria control in Nigeria. 
As Nigeria´s most populous state, Kano's 
epidemiological profile provides a robust basis for 
modeling interventions, with wide variation in 
malaria transmission across its 44 LGAs. The 
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availability of high-resolution, five-year data from 
DHIS2 further supports its suitability for detailed 
mathematical modeling. Importantly, while this 
study is Kano-specific, its findings can apply to 
other high-transmission, resource-constrained 
settings with similar environmental and health 
system characteristics. Kano State, situated in 
northern Nigeria, holds the distinction of being the 
most populous state in Nigeria and comprises 44 
Local Government Areas (LGAs) [21]. The 
healthcare landscape in Kano State closely mirrors 
that of the entire nation, with infectious and 
parasitic diseases prevailing and accounting for 
most of both illness and death within the  
state [5,22]. There are a total of 1183 healthcare 
facilities spread across the 44 LGAs. Of the total 
health facilities, 97% (1142) constitute Primary 
Health Care (PHC) facilities while 3.3% and 0.2% 
fall under the Secondary Health Care (SHC) and 
Tertiary Health Care facilities, respectively [6,23]. 
Most of the healthcare facilities are publicly 
owned (91% primary, 85% secondary, 100% 
tertiary) [23]. 

Kano State, situated in northern Nigeria, holds the 
distinction of being the most populous state in 
Nigeria and comprises 44 Local Government Areas 
(LGAs) [21]. The healthcare landscape in Kano 
State closely mirrors that of the entire nation, with 
infectious and parasitic diseases prevailing and 
accounting for most of both illness and death 
within the state [5,22]. There are a total of 1183 
healthcare facilities spread across the 44 LGAs. Of 
the total health facilities, 97% (1142) constitute 
Primary Health Care (PHC) facilities, while 3.3% 
and 0.2% fall under the Secondary Health Care 
(SHC) and Tertiary Health Care facilities, 
respectively [6]. Most of the healthcare facilities 
are publicly owned (91% primary, 85% secondary, 
100% tertiary) [23]. 

Data collection: secondary data on monthly 
malaria incidence in Kano for the period of January 
2018 to December 2022 were collected from the 
District Health Information System 2 (DHIS2) 
system. The sample for this study consisted of 
monthly malaria case records obtained from the 

DHIS2 platform for all 44 Local Government Areas 
(LGAs) in Kano State. Inclusion criteria were all 
available records of reported malaria cases, 
treatments administered (ACT and other 
antimalarials), and disaggregated data by LGA and 
month. Records with missing or incomplete 
treatment variables were excluded during data 
cleaning. This approach ensured comprehensive 
spatial and temporal coverage of malaria 
incidence and treatment patterns in the state. The 
data obtained from DHIS2 consists mainly of the 
incidence of monthly cases of malaria and treated 
patients. The data was cleaned and analyzed using 
Excel, Python, Google Colab, and R statistical 
software to identify the monthly trends, incidence 
by LGA, simulations, and scenario analysis of 
malaria cases over the study period. The data set 
had the following variables: Local Government 
Area (LGA), Persons with confirmed 
uncomplicated Malaria, Severe Malaria cases seen, 
Persons Clinically diagnosed with Malaria treated 
with ACT, Persons with Confirmed Uncomplicated 
Malaria treated with ACT, Persons with Confirmed 
Uncomplicated Malaria treated with other 
antimalarials, all disaggregated by the month and 
year. 

Mathematical model 

Model description: the model consists of two 
main components: the human population (SITR) 
and the mosquito population (SI). In the human 
population, susceptible individuals (S) can become 
infected (I) through contact with infected 
mosquitoes, move to the treated (T) compartment 
upon receiving treatment, or recover (R) naturally 
or through treatment. In the mosquito population, 
susceptible mosquitoes (S) become infected (I) 
after biting infected humans, with both 
compartments experiencing a natural death rate. 
Arrows in the schematic diagram indicate the flow 
between these compartments, along with the 
natural death rates affecting each group, and 
disease-induced death in the infectious human 
population. 
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Model assumptions: the model was developed 
based on the following assumptions: i) the total 
human and vector population is not constant, ii) 
development of malaria begins after a bite by a 
female Anopheles mosquito, iii) treatment with 
anti-malaria drugs is continuously given to 
infected humans, iv) after recovery, there is 
temporary immunity, v) control measures are 
continuously implemented, vi) Insecticide-treated 
Nets (ITNs) are continuously available/accessible, 
vii) indoor residual spray intervention works and 
leads to mosquito deaths, viii) the populations 
(human and vector) are non-negative, ix) malaria 
has an all-year-round transmission. Individuals 
from the human population move from one class 
to another as their disease status changes and as 
the disease evolves. Individuals enter the 
susceptible class through immigration or birth and 
leave through natural death or infection. 

Model formulation: this study models malaria 
transmission dynamics using the SITR and SI 
models for humans, categorizing mosquitoes 
respectively. The model tracks population sizes 
over time (Nh) for humans and Nv for mosquitoes 
using ordinary differential equations (ODEs) with 
initial conditions. Figure 1 presents the schematic 
illustration of the model, with the arrows 
indicating the migration of the population 
dynamics considering treatment as an 
intervention. The malaria incidence was calculated 
from reported cases and treatment rates from 
data on patients treated with ACTs for 
uncomplicated and severe malaria. The values of 
the parameters for the model were obtained from 
existing literature, as shown in Annex 1 and  
Annex 2, except for the mosquito death rate, 
which we calculated based on the 42-day lifespan 
of female Anopheles mosquitoes using simple 
division [21,22]. 

 

 

 

 

 

 

The state variables in Annex 1 were derived from 
the original dataset and the National Population 
Commission. The variables are Persons with 
confirmed uncomplicated Malaria, severe Malaria 
cases seen, persons clinically diagnosed with 
malaria treated with ACT, and persons with 
confirmed uncomplicated malaria treated with 
ACT. Annex 2 was created based on 
epidemiological studies and enhanced through 
Monte Carlo estimation, a technique proven in 
infectious disease modeling by integrating 
stochastic uncertainty into likelihood-based 
analysis. All malaria cases were categorized as 
infectious, and all treated cases were categorized 
as treated. The initial susceptible population is the 
total population in the first year of the study 
minus the initial infected individuals, and the 
vector population was calculated as three times 
the total population [24]. 

Equations for the SITR-SI model: based on the 
stated assumptions, the system of Ordinary 
Differential Equation (ODE) was adopted to 
develop simple SITR-SI model equations, which 
allow for to simulation of the spread of malaria 
and the impact of treatment. The equations 
formulated are: 
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Parametric values were all collected from 
literature, as represented in Annex 1 and Annex 2, 
excluding the death rate of mosquitoes, which was 
calculated from the Anopheles female mosquito 
life span of 42 days [25,26]. The state variables 
were calculated from the original data set and the 
National Population Commission document [26]. 
The incidence rate was calculated using the 
formula [25]: 

Model analysis 

Equilibrium states of the model: a disease system 
has two possible equilibria, a situation where both 
human and mosquito populations are free from 
infection, where: 

 

This indicates the point at which there is no 
malaria infection. Where Ih = 0 and Iv = 0 [9]. 
Represented as: 

 

At rate of transfer: 

 

And secondly, the endemic equilibrium P* = (x*, 
y*). Where [26]: 

 

Determination of the effective reproduction 
number: second generation matrix using the 
Jacobian method was used to calculate the 
effective reproduction number. The effective 
reproduction number, represented by Re, is the 
number of secondary infections caused by an 
infected individual throughout the course of a 

disease when everyone in the population is 
susceptible, with interventions in place [27]. 

In the six states variables, only Ih and Iv are the 
disease states variables. The disease and transfer 
states are given by F and V, respectively. 

 

The next generation matrix (G) was calculated 
using the matrix FV-1 [Ref], which is given by: 

 

While the effective reproduction number was 
estimated from the largest eigenvalue of G given 
by Li MY [26]: 

 

Existence of disease-free equilibrium solutions: 
the effective reproduction number is a parameter 
that measures the existence and stability of a 
disease in a population. Where R0 is ≤ 0, then the 

system has a disease-free equilibrium, but if R0 is ≥ 

1, there is a unique endemic equilibrium [27]. 

 

Sensitivity and scenario analysis: sensitivity 
analysis was also done using Colab to determine 
the infectivity of the effective reproduction 
number using different parameters. This helps to 
determine how changes in this recruitment rate 
impact Re. Also, scenario analysis was performed 
using the ODE solver in R, to check for the 
different effects of treatment on the population, 
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by adjusting the value to different numbers from 
the initial 0.5% to 0.9%. 

Results     

Figure 2 shows a clear seasonal pattern in malaria 
cases in Kano State from January 2018 to 
December 2022. There are noticeable peaks every 
12 months, starting from June, indicating higher 
transmission rates. The cases continue to peak 
around August to September, which coincides with 
the height of the rainy season, when malaria 
transmission is at its highest due to increased 
breeding of mosquitoes [10]. The data suggest 
that targeted interventions should be 
implemented starting in June to mitigate the rise 
in cases. This was the rationale for developing a 
compartmental model to check the effect of 
treatment on the infected population.  
Figure 3 shows the geospatial analysis of malaria 
incidence in Kano State for 2023 identifies three 
high-burden Local Government Areas (LGAs): Kano 
Municipal, Shanono, and Madobi, with prevalence 
ranging between 26 to 32%. These LGAs exhibit 
the highest malaria burden, highlighting significant 
spatial clustering of malaria incidence within the 
state 

Numerical simulations: in this section, numerical 
simulations are considered to explore transmission 
dynamics. Figure 4 illustrates how the number of 
susceptible humans changes over time. I-Human 
starts with a higher number of susceptible 
individuals and declines slowly, indicating a 
gradual reduction in susceptibility. The T-human 
population begins at a lower point and drops 
quickly to almost zero, suggesting that this group 
experiences a faster decrease in susceptibility due 
to more effective treatment. This trend suggests 
the effectiveness of treatment and control 
measures. It also raises concerns about potential 
challenges, such as drug resistance or barriers to 
healthcare access and seeking medical assistance 
in the long run. Furthermore, the sudden rise in 
the number of people treated and their potential 
return to the susceptible population could lead to 

future outbreaks, underscoring the importance of 
continuous efforts in intervention and prevention 
measures [28]. 

Figure 5 illustrates the dynamics of the susceptible 
vector population (S-vector) and the infected 
vector population (I-vector) over 60 months. 
Initially, the S-vector population starts at 
approximately 200 per 1000, rapidly declines 
within the first 10 months, and then decreases 
gradually. Conversely, the I-vector, starting at 
around 50 per 1000, peaks at 10 months and 
subsequently declines steadily. This pattern 
suggests a high initial number of susceptible 
vectors, which quickly decrease due to infection or 
other factors. Over time, both populations decline, 
indicating potential control or recovery of the 
vector population, consistent with a disease 
transmission model suggesting effective vector 
management. There could be the reasons why the 
number of vectors has decreased, for instance 
improved efforts in controlling them with methods 
like using bed nets treated with insecticides and 
indoor spraying which target both susceptible and 
infected vector groups [29], changes in the 
environment like reduced rainfall or improved 
drainage that can decrease breeding grounds for 
vectors and hence lower their numbers; also 
factors in nature such as more predators  
could lead to a decline in vector populations over 
time [30]. 

Interpretation: the graphs likely model the 
interaction between humans and vectors, such as 
mosquitoes, in a disease transmission scenario. 
The rapid decline in susceptible vectors suggests 
they play a significant role in reducing the risk to 
humans. 

Effective reproduction number: by applying 
equation 12 and using the values for μv and βv 

obtained from literature Annex 1, a Re value of 
3.01 was obtained. This suggests that, on average, 
each individual infected with malaria in Kano state 
is expected to infect approximately 3.01 other 
people, assuming no permanent immunity and 
available interventions. This indicates a  

javascript:%20PopupFigure('FigId=2')
javascript:%20PopupFigure('FigId=3')
javascript:%20PopupFigure('FigId=4')
javascript:%20PopupFigure('FigId=5')
annex1.pdf


Article  
 

 

Zainab Bello Dambazau et al. PAMJ-OH - 18(11). 21 Oct 2025.  -  Page numbers not for citation purposes. 8 

high potential for malaria transmission in the 
region [31]. This aligns with what might be 
expected in a highly endemic region with 
favorable conditions for mosquito breeding and 
transmission. 

Sensitivity analysis - mosquito recruitment rate: 
to effectively lessen the effects of malaria in 
Nigeria, it's crucial to understand the factors that 
affect malaria transmission and occurrence. 
Studies have shown that the initial spread of the 
disease is connected to Re while the prevalence of 
the disease is influenced by the equilibrium point, 
specifically by the levels of infection [11]. The 
study had a negative value of -0.489 for the 
treatment rate when the sensitivity analysis test 
was calculated with respect to the treatment 
intervention. This analysis helps understand the 
influence of parameter values on the spread of 
diseases and helps identify if the intervention has 
an impact on Re [32]. 

Scenario analysis based on treatment 
intervention: scenario analysis shows that 
increasing the treatment rate from 50% to 70% 
and 80% reduces the effective reproduction 
number (Re) from 1.23 to 1.04 and 0.97, 
respectively. 

Discussion     

In this study, we evaluated the dynamics of the 
SITR-SI model and applied malaria transmission 
between humans and mosquitoes. The model 
incorporated demographic factors such as births 
and migration, which allowed infected individuals 
to re-enter the susceptible compartment, as well 
as the impact of treatment on the infected 
population. We derived the basic reproduction 
number and discussed the existence of stability of 
DFE and EE of the model (1,2,3,4,5,6) between 
susceptible humans and mosquitoes (10). The 
analysis showed that if Re is less than one, the 
disease-free equilibrium (DFE) is locally 
asymptotically stable. This implied that only the 
susceptible population remained, while the 

infected populations approached zero, leading to 
disease eradication. Conversely, if Re is greater 
than one, the DFE becomes unstable, indicating 
that humans and mosquitoes will get infected, as 
represented in equations (1)-(4) and (5)-(6), 
respectively. This has been verified numerically, 
with simulations presented in equations (8) and 
(10), and the results are illustrated in Figure 5. 

The sensitivity analysis showed that the most 
effective parameter is ρh for the human 

compartment. The simulation showed that both 
humans and mosquitoes will exist and get 
infected. These results helped predict transmission 
and how preventive and control measures 
impacted the occurrence of malaria. Clearly, in the 
simulations, it was noticed that to reduce the Re, 
there was a need to focus on improved treatment 
in the infected population by increasing the 
coverage to higher levels, to reduce the rate of 
infection, represented shown graphically in  
Figure 4, Figure 5. From the simulations, it is 
evident that to reduce Re, we need to focus on 
improving treatment in the infected population by 
increasing coverage to higher levels, thereby 
reducing the rate of infection. This study presents 
a novel application of a SITR-SI compartmental 
model specifically designed to evaluate the impact 
of ACT treatment coverage on malaria 
transmission in Kano State, Nigeria, a high-burden 
and underrepresented region in malaria modeling 
literature. 

Limitations: one limitation of this study was the 
reliance on secondary data, which could introduce 
inaccuracies in parameter estimates. Data cleaning 
and pre-processing were applied to minimize 
errors. Future research should focus on collecting 
primary data to validate model assumptions and 
improve accuracy. 

Recommendations: i) increase ACT coverage to at 
least 80% to significantly reduce malaria 
transmission, ii) target high-burden LGAs like 
Fagge, Dala, and Gwale with intensified 
interventions, iii) deploy rapid diagnostic tests 
widely to promote early detection and treatment, 
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iv) use seasonal climate data to anticipate 
outbreaks and allocate resources proactively, vi) 
digitize health facility reporting to improve data 
accuracy and timeliness, v) establish a modeling 
unit within the Ministry of Health to guide malaria 
control strategies, vii) launch culturally tailored 
campaigns to improve net usage and prompt 
treatment-seeking behavior. 

Conclusion     

The model showed that malaria can be controlled 
effectively among infected populations by 
increasing the rate of coverage using treatment 
with ACT, which keeps the human population 
stable. 

What is known about this topic 

• Malaria continues to be a significant  
health challenge in sub-Saharan Africa, 
particularly in Nigeria. In 2022, Kano State 
alone reported over 6 million cases, 
highlighting the difficulties posed by 
inadequate infrastructure, socioeconomic 
issues, and climate factors; 

• Ensuring high coverage of ACT (artemisinin-
based combination therapy) is essential for 
controlling malaria. Previous studies have 
demonstrated that achieving coverage 
levels above 70–80% significantly reduces 
both transmission and the duration of 
infection; 

• Mathematical modeling is an established 
approach for simulating the dynamics of 
malaria transmission and has been 
employed to evaluate the effectiveness of 
interventions such as ACT, ITNs, and indoor 
spraying. 

 
 
 
 
 
 

What this study adds 

• This study presents the first detailed 
compartmental SITR-SI model specifically 
applied to malaria in Kano State, 
addressing a gap in region-specific 
modeling by incorporating treatment 
interventions such as ACT; 

• The study identifies a high effective 
reproduction number (Re = 3.01) for Kano 
and shows that increasing ACT treatment 
coverage to 80% can reduce Re below 1, 
indicating the potential for malaria 
elimination; 

• The analysis identifies seasonal and spatial 
trends in malaria cases, highlighting 
transmission peaks during the rainy season 
and pinpointing high-prevalence LGAs such 
as Kano Municipal, Shanono, and Madobi, 
thereby aiding in the targeting of 
interventions. 
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Figure 1: schematic flow diagram of malaria transmission 
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Figure 2: trend of malaria cases in Kano 2018-2022 

 

 

 

Figure 3: map showing prevalence of malaria in 
Kano, 2023 
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Figure 4: simulation of the infected and treated human population 

 

 

 

Figure 5: simulation of susceptible and infected vector population 

 


