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Abstract  
Introduction: Enterococcus and E. coli are important commensals bacteria widely used as bio-indicators to monitor the occurrence and distribution of 

antimicrobial resistance. Methods: rectal faecal samples were collected from healthy cattle from the suburban and farming areas in Tripoli within the period 

2017-2018. Samples were subjected to standard and presumptive laboratory methods to isolate E. coli isolates and enterococci species then further subjected to 

Kirby-Bauer disk diffusion antimicrobial susceptibility test. A selection of multidrug resistant isolates of Enterococci and E. coli isolates were further investigated 

and analysed using the phoenix automated microbiology identification and susceptibility system. PCRs protocols were further applied to screen for blaTEM, 

blaSHV, bla CTX-M, class 1 and 2 integrons and the qacEΔ1-sul1 region of class 1 integrons. Results: a total of 103 healthy cattle were included in the study yielding 

206 Enterococcus species and 162 E. coli antimicrobial resistant isolates. Of these, 73% and 61% were respectively characterized as multidrug-resistant strains. 

The MDR enterococci strains (n=27) expressed various susceptibility patterns distributed over four different enterococci species including E. faecium, E. faecalis, 

E. hirae, and VanC type enterococci. Eight enterococci isolates expressed low level susceptibility to vancomycin of which three isolates were VanC intrinsic type 

and five were vancomycin intermediate susceptibility represented by VanC/type (n=2), E. faecium (n=1), E. hirae (n=1) and E. faecalis (n=1). The investigated MDR 

E. coli strains (n=61) revealed high-level resistance to ampicillin (100%), trimethoprim/sulfamethoxazole (81%), gentamicin (30%) and ciprofloxacin (7%) but no 

resistance was identified to other important critical antimicrobial classes. PCRs revealed that only seventeen MDR E. coli isolates (n=17/25) were positive for 

blaTEM, and sixteen isolates (n=16/25) positive for the class 1 integrons. Conclusion: this is the first surveillance report on antimicrobial resistance among 

commensal bacterial organisms isolated from cattle in Libya. Healthy cattle can carry important bacterial strains expressing different and important antimicrobial 

resistance phenotypes that require continuous monitoring and antimicrobial stewardship in veterinary medicine.  
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Introduction  
 

 

Drug-resistant bacteria increasingly reported from humans, 

food resources and livestock including asymptomatic 

animals [1-8]. These are increasingly reported in the 

underdeveloped countries, mainly attributed to the use of 

antimicrobials, intensive farming production, unregulated 

use of antibiotics, socioeconomic factors, poor sanitation 

and inadequate information on antimicrobial 

consumption [9-13]. Food animal bacteria have major 

implications on public health and associated with treatment 

failures causing serious opportunistic and hospital acquired 

infections [14,15]. Commensals bacteria from food animals 

are exposed to antimicrobial pressure and can be a source of 

multidrug resistant (MDR) bacteria such as extended 

spectrum β-lactamases (ESBLs)-producing 

Enterobacteriaceae as well as vancomycin resistant 

enterococci [16-20]. E. coli and Enterococcus spp. are 

classically bio-indicator commensal organisms used to 

monitor antimicrobial resistance (AMR) providing essential 

data on the selective pressures from antimicrobial use [21-

24]. In cattle, commensal E. coli isolates may serve as 

important reservoirs of drug resistance determinants mainly 

carried by mobile genetic elements, such as transposons and 

conjugative plasmids as well as integrons [25]. Although, the 

intestinal commensals of healthy population may harbour 

antimicrobial resistance genes that are associated with 

extraintestinal infections, such information particularly of 

animal origins are very limited [26]. The current study 

investigated and analysed antimicrobial resistance of 

commensals enterococci and E. coli strains isolated from 

faecal samples of healthy cattle in Tripoli between 2017-

2018.  

 

 

Methods  
 

 

Isolation and identification of E. coli and Enterococcus spp: 

a fresh faecal rectal sample was obtained from each cattle 

and processed in the laboratory within 4 hours. Around 2-3 

grams of faeces were added to 10 ml Brain Heart infusion 

broth (BHI) (LAP M) containing 5% glycerol and homogenized 

using vortex mixer. The mix was then used to streak selective 

mediums to characterize presumptive colonies of 

enterococci and E. coli. For enterococci, 1 ml from the faecal 

mix was added to 3 ml Kanamycin aesculin azide broth 

(KAAB) (LAP M) and incubated under aerobic condition at 37 

oC for 24 hours. A loopful from KAAB was streaked onto 

Kanamycin aesculin azide agar (KAAA) and incubated under 

aerobic conditions at 35 oC for 48h. Plates were checked for 

white or grey typical colonies surrounded by black zones and 

further subjected for presumptive identification by Gram 

stains, catalase reactivity and tested for esculin hydrolysis. 

For E. coli, 1 ml from the faecal mix was added to 3 ml of 

Brilliant Green broth (Oxoid, UK) and incubated at 37 oC for 

24 hours under aerobic conditions. Broths were streaked 

onto eosin methylene blue (EMB) agar (Oxoid, UK) and 

incubated under the same previous conditions. Plates were 

then examined for typical and presumptive round colonies of 

E. coli with a metallic sheen. Colonies were subjected for 

presumptive characterization using Gram stain, catalase and 

oxidase productivity and lactose fermentation. In house 

enterococci and E. coli strains were used as positive controls 

in the selection process. Two presumptive isolates of each 

bacterium were selected from each faecal sample and 

further tested for susceptibility to antimicrobial drugs.  

 

Antimicrobial susceptibility testing: isolates were subjected 

to Kirby-Bauer disc diffusion method following the clinical 

and laboratory standards Institute guidelines [27]. E. coli 

strains were tested to ampicillin, tetracycline, 
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trimethoprim/sulfamethoxazole, chloramphenicol, and 

nalidixic acid. Enterococci isolates were tested to ampicillin, 

ciprofloxacin, erythromycin, tetracycline, chloramphenicol, 

and gentamicin. For the purpose of the current study, 

isolates were identified as antimicrobial resistant (AMR) 

strains based on the criteria of “resistance to at least one 

antimicrobial agent” and as multidrug resistant (MDR) 

strains if the criteria of “resistance to at least two different 

antimicrobial agents” was characterized. Epi Info™ of the 

Centers for Disease Control and Prevention was used to 

calculate the statistically significant differences of 

antimicrobial resistance phenotype between the studied 

strains using the Chi-square test (P≤0.05). A selection of MDR 

isolates of each bacterium were chosen based on the 

inclusion of ampicillin resistance within their MDR profiles 

for further investigation using the phoenix automated 

microbiology identification and susceptibility testing system 

(BD Phoenix (PAMS, MSBD Biosciences, Sparks Md, US). This 

step was used to confirm the studied selections at species 

level as well as determining the susceptibility to extended 

antimicrobial classes. In relation to enterococci, the 

automated system cannot fully identify and differentiate 

between the intrinsic VanC type of enterococci (i.e. E. 

casseliflavus/gallinarum), therefore, these bacteria are 

referred to as VanC type enterococci in results and discussion 

sections.  

 

Molecular investigation of MDR selected E. coli isolates: a 

selection of MDR E. coli isolates, that were fully 

characterized by the automated system, were chosen based 

on variable and extended AMR profiles and screened by PCRs 

for the presence of the important and common resistant 

genetic mechanisms; blaTEM, blaSHV, bla CTX-M, class 1 and 

2 integrons and the qacEΔ1-sul1 region of class 1 

integrons [28-30]. DNA was extracted by boiling a 

suspension of overnight- grown cultured bacterial cells in 

200 μl of sterile distilled water. Each PCR mix (25 μl) 

contained 12.5μl HotStarTaq® Master Mix (QIAGEN, France) 

and 0.5μM of each primer. All PCRs were performed using an 

Eppendorf thermal cycler, and each run included a negative 

and positive inhouse control. After electrophoresis, PCR 

products (20 μl) were resolved on a 2% (wt/vol) agarose gels 

containing ethidium bromide (0.5 µg/mL). A 100-bp DNA 

marker (InvitrogenTM 100 bp DNA Ladder) was used to 

determine amplicon size.  

 

 

Results 
 

 
In total, 103 healthy cattle were included originated from six 

dairy farms. Of these, 100% (n=103) of faecal samples were 

positive for at least one antimicrobial resistant enterococci 

species and 93% (n=96) were positive for at least one 

antimicrobial resistant E. coli strains. Also, 57% (59/103) of 

faecal samples were positive for each multidrug (MDR) 

Enterococcus and E. coli isolates. The process yielded a total 

of 206 enterococci species and 162 E. coli isolates expressing 

antimicrobial resistance to different antimicrobial agents. No 

significant differences of antimicrobial resistance 

expressions were identified between both bacteria for the 

studied and compared antimicrobial classes, except for 

tetracycline (P=0.00001; OR=0.3). In addition, 73% (n= 

151/206) of enterococci species and 61% (n=99/162) of E. 

coli isolates expressed multidrug resistance (MDR) 

phenotypes revealing significantly higher detection rate of 

MDR among the studied Enterococcus species (Table 1). A 

selection of 27 MDR enterococci isolates were further 

analysed by the automated microbiological system and 

found to be distributed over four enterococci species; E. 

faecium (n=15), E. hirae (n=5), VanC/type (n=5) and E. 

faecalis (n=2). All isolates were susceptible to ampicillin, 

amoxicillin-clavulanate, ciprofloxacin, teicoplanin, 

nitrofurazone, erythromycin, daptomycin, mupirocin and 

linezolid. All isolates were resistant to trimethoprim-
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sulfamethoxazole, clindamycin, gentamicin, fusidic acid and 

cephalosporins (i.e. cefoxitin and cefotaxime) (Table 2).  

 

Three isolates were indicated by the automated system as 

VRE (i.e. VanC intrinsic resistant enterococci) and five were 

indicated as vancomycin intermediate susceptible 

represented by VanC/type (n=2), E. faecium (n=1), E. hirae 

(n=1), and E. faecalis (n=1). Also, five enterococci were 

intermediately susceptible to ciprofloxacin (MICs=2 μg/mL) 

represented by E. faecium (n=4) and E. faecalis (n=1). A 

selection of 61 MDR E. coli isolates were subjected to the 

phoenix automated system of which 41% (n=25/61) 

expressed resistance to various antibiotic classes including 

ampicillin (100%), trimethoprim/sulfamethoxazole (81%), 

gentamicin (30%), and ciprofloxacin (7%). Only one isolate 

was identified to be resistant to cephalothin, cefuroxime, 

ceftriaxone, intermediate to cefepime and aztreonam but 

susceptible to cefoxitin and ceftazidime. Also, three strains 

showed intermediate susceptibility to amoxicillin-clavulanic 

acid. None of the MDR E. coli strains expressed resistance to 

amoxicillin-clavulanic acid, carbapenems (i.e. ertapenem, 

imipenem, meropenem), nitrofurazone, polymyxin B and 

colistin. The MDR E. coli isolates were further tested by PCRs 

revealing that seventeen MDR E. coli isolates (n=17/25) were 

positive for blaTEM gene, sixteen (n=16/25) isolates were 

positive for the intI1 gene. None of the isolates presented 

the blaSHV, blaCTX-M or the intI2 gene and the VR of the 

class 1 integron was detected only in four isolates (Table 3).  

 

 

Discussion 
 

 

Farm animals are exposed to variable quantities of 

antimicrobials causing permanent alteration in the 

commensal microbiota [2,4,13,31]. This increases 

antimicrobial resistance rate up to five folds including to the 

same used antibiotic classes, as well as increasing the 

dissemination of MDR- and AMR- encoding genetic 

determinants [32-34]. In the current study, 93% to 100% and 

57% of the studied healthy cattle were positive respectively 

for faecal AMR and MDR resistant strains. No significant 

difference was observed between both of the commensal 

bacterium in the resistance shown to different antimicrobial 

agents, however; enterococci expressed higher MDR 

phenotypes comparing to E. coli. In the current study, the 27 

studied MDR enterococci isolates were found to belong to 

four different species mainly E. faecium. The E. faecium 

strains expressed resistance only to trimethoprim-

sulfamethoxazole, clindamycin, gentamicin, fusidic acid and 

cephalosporins (i.e. cefoxitin and cefotaxime). In addition, 

five enterococci strains were identified as vancomycin 

intermediate susceptibility (MICs=8μg/mL) represented by 

VanC/type enterococci (n=2), E. faecium (n=1), E. hirae, (n=1) 

and E. faecalis (n=1). This corresponds with a recent pan-

surveillance survey from the EU investigating the 

susceptibility of large collection of commensal enterococci 

collected from food-producing animals [24]. This report 

revealed variable antibiotic susceptibility and low to absent 

resistance to the critically important antimicrobial such as 

ampicillin, gentamicin, linezolid, tigecycline and vancomycin, 

but high resistance to quinupristin/dalfopristin, tetracycline 

and erythromycin [24]. This recent survey revealed similar 

results to our current study in regards the decreased 

susceptibility to vancomycin (i.e. MICs of 8μg/mL) only 

among few enterococci species.  

 

In food production, the emergence of different VRE 

genotypes, of animal origins (e.g. cattle, poultry) has been 

mainly linked to the widespread use of sub-therapeutic 

antibiotics [35]. The VanA-VRE type is frequently associated 

with high level of resistance to both vancomycin 

(MIC≥64μg/mL) and teicoplanin (MIC≥16μg/mL), whereas 

VanB is associated with varying levels of resistance to 
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vancomycin (MIC 1-1000 μg/mL) but not to 

teicoplanin [20,35]. A study investigating VRE strains which 

were identified based on criteria of MICs≥8mg/L using an 

automated identification system, has reported vanC-1 

resistance gene in E. faecium and E. gallinarum characterized 

by low-level resistance to vancomycin [36]. Another study 

analysing clinical and faecal strains of 60 VRE/vancomycin 

intermediate enterococci (i.e. MIC of 8-16 μg/mL), has 

identified vanA or vanB genes in E. faecalis and E. faecium 

strains, but only vanB gene in E. gallinarum strains [37]. The 

VanC types (i.e. E. casseliflavus/E. gallinarum) has attracted 

less attention, despite their increasing associations with 

human infections and outbreaks; however, these inducible 

types are associated with antibiotic exposure able to express 

various vancomycin resistant phenotypes such as VanA, 

VanB and VanD types [20]. In the current study, only blaTEM 

and class 1 integrons were identified respectively among 17 

and 16 isolates, of the 25 studied MDR E. coli isolates. These 

findings correspond with global trends on the most reported 

genetic mechanisms responsible for MDR phenotypes [29]. 

A recent report has documented antimicrobial-resistant 

Gram-negative bacteria from 81% of 102 fecal rectal samples 

of healthy human population mainly expressing β-lactamase 

genes (blaTEM, blaSHV, blaCTX-M, and blaOXA) (72%) and 

Integron sequences (36%) [26]. Another study from North 

Africa investigating 174 E. coli isolates collected from healthy 

food producing animals including cattle reported MDR 

phenotypes in 44.2% of the collection but the absence of 

ESBL producers [9].  

 

Class 1 integrons are mainly reported in MDR E. coli isolates 

in cattle however, class 2 integrons are reported at low 

frequencies [38,39]. Class 1 integrons are widely reported 

from different animals carried by various bacterial organisms 

such as E. coli, K. pneumoniae and S. aureus and associated 

with both vertical and horizontal transmission [40,41]. 

Recent reports have shown that E. coli isolates from healthy 

cattle and non-healthy calves can carry highly diverse gene 

cassettes encoding antibiotic resistance in the variable 

regions of their class 1 integrons such as flo, dfrA, and aadA 

gene cassette [42,43]. Class 1 integron has been particularly 

associated with various alleles of dfr-encoding trimethoprim 

resistance (e.g. dfrA1 and dfrA17) and tetracycline resistance 

genes in commensal E. coli isolated from cattle and 

associated with antimicrobial pressure including at the 

subtherapeutic doses of sulfamethazine and/or 

chlortetracycline [44,45]. In the present study, the 

presumptive isolation process used in the current study have 

been widely documented as reliable laboratory protocols for 

reliable characterization of commensals E. coli and 

enterococci species [46,47]. The automated identification 

systems (including the phoenix system) have been 

increasingly used showing accurate performance for the 

detection and analysis of AMR and MDR pathogens (e.g. 

ESBLs and VRE) [48-50].  

 

 

Conclusion  
 

 

This is the first study that provides novel data on the status 

and distribution of antimicrobial resistance in food 

producing animals in Libya. The gastrointestinal microbiota 

of cattle may harbour commensal bacterial species carrying 

various antibiotic resistance determinants of public health 

concerns particularly among the enterococci species. 

Antimicrobial stewardship in animal medicine is very 

important to overcome the critical consequences of AMR 

and MDR on human health and further investigations and 

monitoring studies are required.  
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What is known about this topic 

 Antimicrobial resistance in a global serious concern 

affecting humans and animals with variable 

geographic distribution; 

 Animals particularly food-producing livestock play 

important role in the dissemination and 

development of antimicrobial resistance; 

 The available data are mostly related to humans 

and hospital acquired bacteria with little 

information of zoonotic origins. 

What this study adds 

 The important and possible role of commensals as a 

reservoir of antimicrobial resistance and the 

importance of continuous monitoring;  

 Understand the burden of bacterial drug resistance 

and pressure effect of antimicrobials use in 

important food animals;  

 Data and epidemiological information particularly 

of zoonotic nature on the spread of drug resistant 

bacteria in food animals in North African region.  
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Table 1: susceptibility to antimicrobials of Enterococcus and E. coli resistant isolates    

Antibacterial agents  No. of resistant Enterococci 
isolates (%)  

No. of resistant E. coli 
isolates (%)  

P (OR)  

Ampicillin  28 (14%)  114 (70%)  0 (15)  

Chloramphenicol  24 (12%)  13 (8%)  0.2(0.6)  

Nalidixic acid  ND  43 (27%)  --  

Ciprofloxacin  56 (27%)  ND  --  

Erythromycin  102 (50%)  ND  --  

Tetracycline  178 (86%)  108 (67%)  0.00001 (0.3)  

Trimethoprim- Sulfamethoxazole  ND  75 (46%)  --  

Gentamicin  129 (63%)  ND  --  

Multi Drug resistant  151 (73%)  99 (61%)  0.01 (0.6)  

Abbreviation: --, Not defined  
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Table 2: summary and distribution of antibiotic resistance of MDR Enterococcus species isolated 
from faecal samples  

Antibiotic    No and (%) of Enterococcus species (n=27)  

E. faecium (n=15)  VanC/type (n=5)  E. hirae (n=5)  E. faecalis (n=2)  

AMP  0(0)  0(0)  0(0)  0(0)  

AMC  0(0)  0(0)  0(0)  0(0)  

STX  15(100)  5(100)  5(100)  2(100)  

TET  7(47)  1(7)  2(13)  2(100)  

CIP  0(0)  0(0)  0(0)  0(0)  

CLI  15(100)  5(100)  5(100)  2(100)  

GEN  15(100)  5(100)  5(100)  2(100)  

VAN  0(0)  3(60)**  0(0)  0(0)  

TEI  0(0)  0(0)  0(0)  0(0)  

NITRO  0(0)  0(0)  0(0)  0(0)  
ERY  0(0)  0(0)  0(0)  0(0)  

Dapt  0(0)  0(0)  0(0)  0(0)  

Mupi  0(0)  0(0)  0(0)  0(0)  

FUSI  15(100)  5(100)  5(100)  2(100)  

LIN  0(0)  0(0)  0(0)  0(0)  

CEPH*  15(100)  5(100)  5(100)  2(100)  

CARB  0(0)  0(0)  0(0)  0(0)  

Polym-B  NA  NA  NA  NA  

Col  NA  NA  NA  NA  

Abbreviations: NA; Not Available, AMP; Ampicillin, AMC; Amoxicillin and clavulanic acid, STX; 
Trimethoprim- sulfamethoxazole, TET; Tetracycline, CIP; Ciprofloxacin, CLI; Clindamycin, GEN; 
Gentamicin, Van; Vancomycin, TEI, Teicoplanin, NITRO; Nitrofurazone, ERY; Erythromycin, Dapt; 
daptomycin, Mupi; mupirocin, FUI; Fusidic acid, LIN; Linezolid, CEPH; Cephalosporins, CARB; 
Carbapenems (ertapenem, imipenem, meropenem), Polym-B; Polymyxin B, Col; Colistin Footnotes: 
*Only one E. coli isolate showed resistance to the cephalosporins: cephalothin, cefuroxime, 
ceftriaxone and intermediate to cefepime but susceptible to cefoxitin and ceftazidime. 
Enterococcus isolate were tested to only 2 cephalosporins: cefoxitin and cefotaxime. **These VanC 
type enterococci were identified as vancomycin resistant by the Phoenix automated system  
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Table 3: the MICs values and interpretation of MDR E. coli isolates and the associated genes and 
genetic determinants (BD Phoenix) (CLSI)  

Isolate 
NO.  

Antimicrobial Resistance Profiling  Genes and Int determinants  

Int1  VR(bp)  qacE-sul1  blaTEM  

1a  AMP  +  -  +  +  

2  AMP-STX  +  -  +  +  

3  AMP-STX  +  -  +  +  

4  AMP-STX  -  -  -  -  

5  AMP-STX  +  -  +  +  

6b  AMP-STX-CIP  +  -  -  +  

7  AMP  +  -  +  +  

8  AMP-STX-GEN  +  -  +  +  

9  AMP-STX -GEN  +  250  +  +  

10c  AMP-STX  +  300  +  +  

11  AMP  -  -  -  -  

12d  AMP-STX-GEN  -  -  -  -  

13  AMP-STX  -  -  -  -  

14c  AMP-STX  -  -  -  -  

15  AMP  +  300  +  +  

16  AMP-STX-GEN  +  -  +  +  

17  AMP  -  -  -  -  

18  AMP-STX-GEN  -  -  -  -  

19  AMP-STX-GEN  -  -  -  +  

20  AMP-STX  +  -  +  +  

21  AMP-STX  +  800  +  +  

22  AMP-STX  -  -  -  -  

23  AMP-STX  +  -  -  +  

24b  AMP-AMC-STX-CIP-GEN  +  -  +  +  

25b  AMP-AMC-STX-CIP-GEN  +  -  +  +  

Abbreviation: AMP; Ampicillin, AMC; Amoxicillin and clavulanic acid, STX; Trimethoprim- 
sulfamethoxazole, CIP; Ciprofloxacin, GEN; Gentamicin, ND; Not determined, +; Positive, -; 
Negative Footnotes: a This isolate has the following MIC range for cephalosporins as follows: 
cephalothin (>16), cefuroxime ((>16), ceftriaxone and intermediate to cefepime and to 
aztreonam; b These isolates show further resistance to levofloxacin MIC=>4); c This isolate show 
intermediate susceptibility to tigecycline MIC=4), d This isolate show intermediate susceptibility 
to aztreonam  

 

 

 


